Comparison of Blood and Brain Mercury Levels in Infant Monkeys Exposed to Methylmercury or Vaccines Containing Thimerosal
Environ Health Perspect. 2005 Aug; 113(8): 1015–1021. Published online 2005 Apr 21. doi: 10.1289/ehp.7712
Thomas M. Burbacher,1,2,3 Danny D. Shen,4 Noelle Liberato,1,2,3 Kimberly S. Grant,1,2,3
Elsa Cernichiari,5 and Thomas Clarkson5
1Department of Environmental and Occupational Health Sciences, School of Public Health and Community Medicine,
2Washington National Primate Research Center,
3Center on Human Development and Disability, and
4Departments of Pharmacy and Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
5Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York, USA
Abstract
Thimerosal is a preservative that has been used in manufacturing vaccines since the 1930s. Reports have indicated that infants can receive ethylmercury (in the form of thimerosal) at or above the U.S. Environmental Protection Agency guidelines for methylmercury exposure, depending on the exact vaccinations, schedule, and size of the infant. In this study we compared the systemic disposition and brain distribution of total and inorganic mercury in infant monkeys after thimerosal exposure with those exposed to MeHg. Monkeys were exposed to MeHg (via oral gavage) or vaccines containing thimerosal (via intramuscular injection) at birth and 1, 2, and 3 weeks of age. Total blood Hg levels were determined 2, 4, and 7 days after each exposure. Total and inorganic brain Hg levels were assessed 2, 4, 7, or 28 days after the last exposure. The initial and terminal half-life of Hg in blood after thimerosal exposure was 2.1 and 8.6 days, respectively, which are significantly shorter than the elimination half-life of Hg after MeHg exposure at 21.5 days. Brain concentrations of total Hg were significantly lower by approximately 3-fold for the thimerosal-exposed monkeys when compared with the MeHg infants, whereas the average brain-to-blood concentration ratio was slightly higher for the thimerosal-exposed monkeys (3.5 ± 0.5 vs. 2.5 ± 0.3). A higher percentage of the total Hg in the brain was in the form of inorganic Hg for the thimerosal-exposed monkeys (34% vs. 7%). The results indicate that MeHg is not a suitable reference for risk assessment from exposure to thimerosal-derived Hg. Knowledge of the toxicokinetics and developmental toxicity of thimerosal is needed to afford a meaningful assessment of the developmental effects of thimerosal-containing vaccines. Key words: brain and blood distribution, elimination half-life, ethylmercury, infant nonhuman primates, methylmercury, thimerosal.
Excerpt: “A recently published IOM review (IOM 2004) appears to have abandoned the earlier recommendation [of studying mercury and autism] as well as back away from the American Academy of Pediatrics goal [of removing mercury from vaccines]. This approach is difficult to understand, given our current limited knowledge of the toxicokinetics and developmental neurotoxicity of thimerosal, a compound that has been (and will continue to be) injected in millions of newborns and infants.”
Excerpt: “ The average brain-to-blood partitioning ratio of total Hg in the thimerosal group was slightly higher than that in the MeHg group (3.5 ± 0.5 vs. 2.5 ± 0.3, t-test, p = 0.11). Thus, the brain to-blood Hg concentration ratio established for MeHg will underestimate the amount of Hg in the brain after exposure to thimerosal. “