July 2013

Abstract

Emerging research suggests that the timing of environmental factors in the presence of genetic predispositions has influenced the increase in autism spectrum disorders over the past several decades. A review of the medical literature suggests that autism may be impacted by environmental toxicants, breastfeeding duration, gut flora composition, nutritional status, acetaminophen use, vaccine practices and use of antibiotics and/or frequency of infections. The author reports her retrospective clinical research in a general pediatric practice (Advocates for Children), which shows a modest trend toward lower prevalence of autism than her previous pediatric practice or recent CDC data. Out of 294 general pediatrics patients followed since 2005 there were zero new cases of autism (p value 0.014). Given the prevalence of autism for that cohort of 1 in 50 children in the United States, it is important to consider implementing strategies in primary care practice that could potentially modify environmental factors or affect the timing of environmental triggers contributing to autism.

More
  • July 30, 2013

Journal of Inorganic Biochemistry Volume 128, November 2013, Pages 237-244 Administration of aluminium to neonatal mice in vaccine-relevant amounts is associated with adverse long term neurological outcomes C.A.Shaw a b c, Y.LiaL.Tomljenovic a a Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada b Program...

More
  • July 19, 2013

Excerpt:
“Dendritic cells play key roles in modulating immune responses and differences in frequencies or functions of these cells may result in immune dysfunction in children with ASD. These data further implicate innate immune cells in the complex pathophysiology of ASD.”

More
  • July 16, 2013

Excerpt:
“While the etiology of ASD remains unknown, various clues suggest a possible association with altered immune responses and ASD. Inflammation in the brain and CNS has been reported by several groups with notable microglia activation and increased cytokine production in postmortem brain specimens of young and old individuals with ASD.”

More
  • July 15, 2013

Excerpt:
“Elevation in peripheral oxidative stress is consistent with, and may contribute to, the more severe functional impairments in the ASD-GID group. With unique medical, metabolic, and behavioral features in children with ASD-GID, the present findings serve as a compelling rationale for both individualized approaches to clinical care and integrated studies of biomarker enrichment in ASD subgroups that may better address the complex etiology of ASD.”

More
  • July 3, 2013