Mercury toxicity: Genetic susceptibility and synergistic effects

Share

B.E. Haley/Medical Veritas 2 (2005) 535–542

Mercury toxicity: Genetic susceptibility and synergistic effects

Medical Veritas 2 (2005) 535–542

Boyd E. Haley, PhD. Professor and Chair, Department of Chemistry, University of Kentucky

Abstract
Mercury toxicity and intoxication (poisoning) are realities that every American needs to face. Both the Environmental Protection Agency and National Academy of Science state that between 8 to 10% of American women have mercury levels that would render any child they gave birth to neurological disorders. One of six children in the USA have a neurodevelopmental disorder according to the Centers for Disease Control and Prevention. Yet our dentistry and medicine continue to expose all patients to mercury. This article discusses the obvious sources of mercury exposures that can be easily prevented. It also points out that genetic susceptibility and exposures to other materials that synergistically enhance mercury and ethylmercury toxicity need to be evaluated, and that by their existence prevent the actual determination of a “safe level” of mercury exposure for all. The mercury sources we consider are from dentistry and from drugs, mainly vaccines, that, in today’s world are not only unnecessary sources, but also sources that are being increasingly recognized as being significantly deleterious to the health of many.

Excerpt
“4. Hormonal effects: Testosterone and Estrogen

Testosterone and estrogen-like compounds give vastly different results. Using female hormones we found them not toxic to the neurons alone and to be consistently protective against thimerosal toxicity. In fact, at high levels they could afford total protection for 24 hours against neuronal death in this test system (data not plotted). However, testosterone which appeared protective at very low levels (0.01 to 0.1 micromolar), dramatically increased neuron death at higher levels (0.5 to 1.0 micromolar). In fact, 1.0 micromolar levels of testosterone that by itself did not significantly increase neuron death (red flattened oval), within 3 hours when added with 50 nanomolar thimerosal (solid circles) caused 100% neuron death. Fifty nanomolar thimerosal at this time point did not significantly cause any cell death.

These testosterone results, while not conclusive because of the in vitro neuron culture type of testing, clearly demonstrated that male versus female hormones may play a major role in autism risk and may explain the high ratio of boys to girls in autism (4 to 1) and autism related disorders.

  • August 29, 2005