Abstract
Thimerosol is an antiseptic containing 49.5% ethyl mercury that has been used for years as a preservative in many infant vaccines and in flu vaccines. Environmental methyl mercury has been shown to be highly neurotoxic, especially to the developing brain. Because mercury has a high affinity for thiol (sulfhydryl (-SH)) groups, the thiol-containing antioxidant, glutathione (GSH), provides the major intracellular defense against mercury-induced neurotoxicity. Cultured neuroblastoma cells were found to have lower levels of GSH and increased sensitivity to thimerosol toxicity compared to glioblastoma cells that have higher basal levels of intracellular GSH. Thimerosal-induced cytotoxicity was associated with depletion of intracellular GSH in both cell lines. Pretreatment with 100 microM glutathione ethyl ester or N-acetylcysteine (NAC), but not methionine, resulted in a significant increase in intracellular GSH in both cell types. Further, pretreatment of the cells with glutathione ethyl ester or NAC prevented cytotoxicity with exposure to 15 microM Thimerosal. Although Thimerosal has been recently removed from most children’s vaccines, it is still present in flu vaccines given to pregnant women, the elderly, and to children in developing countries. The potential protective effect of GSH or NAC against mercury toxicity warrants further research as possible adjunct therapy to individuals still receiving Thimerosal-containing vaccinations.

More
  • September 29, 2004

Abstract

The autism-mercury hypothesis first described by Bernard et al. has generated much interest and controversy. The Institute of Medicine (IOM) reviewed the connection between mercury-containing vaccines and neurodevelopmental disorders, including autism. They concluded that the hypothesis was biologically plausible but that there was insufficient evidence to accept or reject a causal connection and recommended a comprehensive research program. Without citing new experimental evidence, a number of observers have offered opinions on the subject, some of which reject the IOM’s conclusions. In a recent review, Nelson and Bauman argue that a link between the preservative thimerosal, the source of the mercury in childhood vaccines, is improbable. In their defense of thimerosal, these authors take a narrow view of the original hypothesis, provide no new evidence, and rely on selective citations and flawed reasoning. We provide evidence here to refute the Nelson and Bauman critique and to defend the autism-mercury hypothesis.

More
  • February 23, 2004

Abstract
Methylation events play a critical role in the ability of growth factors to promote normal development. Neurodevelopmental toxins, such as ethanol and heavy metals, interrupt growth factor signaling, raising the possibility that they might exert adverse effects on methylation. We found that insulin-like growth factor-1 (IGF-1)- and dopamine-stimulated methionine synthase (MS) activity and folate-dependent methylation of phospholipids in SH-SY5Y human neuroblastoma cells, via a PI3-kinase- and MAP-kinase-dependent mechanism. The stimulation of this pathway increased DNA methylation, while its inhibition increased methylation-sensitive gene expression. Ethanol potently interfered with IGF-1 activation of MS and blocked its effect on DNA methylation, whereas it did not inhibit the effects of dopamine. Metal ions potently affected IGF-1 and dopamine-stimulated MS activity, as well as folate-dependent phospholipid methylation: Cu(2+) promoted enzyme activity and methylation, while Cu(+), Pb(2+), Hg(2+) and Al(3+) were inhibitory. The ethylmercury-containing preservative thimerosal inhibited both IGF-1- and dopamine-stimulated methylation with an IC(50) of 1 nM and eliminated MS activity. Our findings outline a novel growth factor signaling pathway that regulates MS activity and thereby modulates methylation reactions, including DNA methylation. The potent inhibition of this pathway by ethanol, lead, mercury, aluminum and thimerosal suggests that it may be an important target of neurodevelopmental toxins.

More
  • January 27, 2004

Excerpt:

“However, autism comprises a heterogeneous population in that parents report either that their child was abnormal from birth, or that their child was developmentally normal until sometime after birth, at which time the child began to regress or deteriorate. Anecdotal reports suggest that some children with autism have significant illness or clinical events prior to the development of autistic symptoms. Conceivably, these children may become autistic from neuronal cell death or brain damage sometime after birth as result of insult. To support this theory is that marked Purkinje cell loss, the most consistent finding in the autistic disorder, can result from insult. Evidence suggests that the Purkinje cell is selectively vulnerable. This article discusses a theory that the selective vulnerability of the Purkinje cell may play a role in the etiology of autism, and suggests that a future direction in autism research may be to investigate the possibility of neuronal cell loss from insult as a cause of autism.”

More
  • September 1, 2003