admin

Excerpt:
“Six case-control studies with 425 study subjects met our inclusion criteria. A total of four studies indicated higher levels of As, Pb, Hg, Cd, Al, Sn, Sb, Ba, TI, W, and Zr in whole blood, RBC, in whole blood, RBC, and hair samples of children with autism compared with control suggestive of a greater toxic metal exposure (immediate and long-term). Three studies identified significantly higher concentrations of Cd, Pb and Hg in urine and hair samples of autistic children compared to control suggesting decreased excretion and possible high body burden of these metals. The findings from this review demonstrate that high levels of toxic metals are associated with ASD, therefore, critical care is necessary to reduce body burden of these metals in children with ASD as a major therapeutic strategy.”

More
  • January 1, 2022

Excerpts:

“Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms.”

“Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.”

More
  • December 7, 2021

Abstract

The gut microbiome profile of a child with autism spectrum disorder (ASD) and co-occurring gastrointestinal (GI) symptoms was compared to that of her healthy triplet siblings to determine if she exhibited intestinal dysbiosis. Shotgun metagenomic sequencing was performed in individual fecal samples, and relative microbial abundance and diversity was determined. Microbial diversity was lower in sibling #3, coupled with a higher Bacteroidetes/Firmicutes ratio, a lower relative abundance of Actinobacteria, and an increased relative abundance of Proteobacteria. Our findings are suggestive of gut dysbiosis in a child with ASD and co-occurring GI symptoms, compared to her two healthy triplet siblings.

More
  • November 25, 2020

Excerpt:
“Accumulating evidence implies the gut-brain axis as a pathway for MeHg harmful neurotoxic effects and a potential factor for later neurodegenerative disorders. The MeHg may induce a hormesis-related neuronal toxicity. Hormesis is an important redox dependent aging-associated neurodegenerative/ neuroprotective issue (Calabrese et al., 2010). The use of antioxidants, such as plant polyphenols (Calabrese et al., 2010; Leri et al., 2020) and protective nutrients (Oria et al., 2020) may be beneficial in reducing the MeHg-driven neuroinflammatory state and associated cell death with the interplay of the intestinal microbiota.”

More
  • November 3, 2020

Excerpts:
“Aberrant migration of inhibitory interneurons can alter the formation of cortical circuitry and lead to severe neurologic disorders including epilepsy, autism, and schizophrenia.”

“These findings highlight key roles for JNK signaling in leading process branching, nucleokinesis, and the trafficking of centrosomes and cilia during interneuron migration, and further implicates JNK signaling as an important mediator of cortical development.”

More
  • August 20, 2020

“Background: Encephalitis, the inflammation of the brain, may be caused by an infection or an autoimmune reaction.”

“Conclusion: Gut microbiota disruption was observed in encephalitis patients, which manifested as pathogen dominance and health-promoting commensal depletion. Disease severity and brain damage may have associations with the gut microbiota or its metabolites.”

More
  • August 20, 2020