Excerpt:
“These findings suggest that infantile zinc- and magnesium-deficiency and/or toxic metal burdens may be critical and induce epigenetic alterations in the genes and genetic regulation mechanisms of neurodevelopment in the autistic children, and demonstrate that a time factor “infantile window” is also critical for neurodevelopment and probably for therapy. Thus, early metallomics analysis may lead to early screening/estimation and treatment/prevention for the autistic neurodevelopment disorders.”
Genes
Excerpt:
“Our findings suggest that chemicals and genetic mutations that impair topoisomerases could commonly contribute to ASD and other neurodevelopmental disorders.”
Abstract
Emerging research suggests that the timing of environmental factors in the presence of genetic predispositions has influenced the increase in autism spectrum disorders over the past several decades. A review of the medical literature suggests that autism may be impacted by environmental toxicants, breastfeeding duration, gut flora composition, nutritional status, acetaminophen use, vaccine practices and use of antibiotics and/or frequency of infections. The author reports her retrospective clinical research in a general pediatric practice (Advocates for Children), which shows a modest trend toward lower prevalence of autism than her previous pediatric practice or recent CDC data. Out of 294 general pediatrics patients followed since 2005 there were zero new cases of autism (p value 0.014). Given the prevalence of autism for that cohort of 1 in 50 children in the United States, it is important to consider implementing strategies in primary care practice that could potentially modify environmental factors or affect the timing of environmental triggers contributing to autism.
PLoS ONE 8(3): e58058. doi:10.1371/journal.pone.0058058 Identification of Unique Gene Expression Profile in Children with Regressive Autism Spectrum Disorder (ASD) and Ileocolitis Walker SJ, Fortunato J, Gonzalez LG, Krigsman A AbstractGastrointestinal symptoms are common in children with autism spectrum disorder (ASD) and are often associated with mucosal inflammatory infiltrates of the...
Excerpts:
“In our clinical work and review of the literature, we have been impressed by the possible role of autoimmune disorders as influencing the pathophysiology of a distinct, objectively defined etiologic subtype of ASDs.”
“The notion that environmental factors contribute to ASD prevalence continues to evolve. Once-influential theories suggesting links among exposure to vaccines containing attenuated virus or toxins, conditions such as inflammatory bowel disease, and ASDs have fallen from favor since the retraction of a key study (Wakefield et al, 1998). It is important to emphasize, however, that the major reason for retraction was poor scientific method rather than theoretical flaws. Although ASDs are currently within the realm of psychiatrists and neurologists, it is becoming clear that at least some subtypes represent whole-body disorders, offering exciting new possibilities for therapy.”
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental diseases that affect an alarming number of individuals. The etiological basis of ASD is unclear, and evidence suggests it involves both genetic and environmental factors. There are many reports of cytokine imbalances in ASD. These imbalances could have a pathogenic role, or they may be markers of underlying genetic and environmental influences. Cytokines act primarily as mediators of immunological activity, but they also have significant interactions with the nervous system. They participate in normal neural development and function, and inappropriate activity can have a variety of neurological implications. It is therefore possible that cytokine dysregulation contributes directly to neural dysfunction in ASD. Further, cytokine profiles change dramatically in the face of infection, disease, and toxic exposures. Therefore, imbalances may represent an immune response to environmental contributors to ASD. The following review is presented in two main parts. First, we discuss select cytokines implicated in ASD, including IL-1Β, IL-6, IL-4, IFN-γ, and TGF-Β, and focus on their role in the nervous system. Second, we explore several neurotoxic environmental factors that may be involved in the disorders, and focus on their immunological impacts. This review represents an emerging model that recognizes the importance of both genetic and environmental factors in ASD etiology. We propose that the immune system provides critical clues regarding the nature of the gene by environment interactions that underlie ASD pathophysiology.
Excerpt:
“The results support the hypothesis that Hg sensitivity may be a heritable/genetic risk factor for ASD.”
Excerpt:
“Conclusion This finding has immense value in understanding many of the known biochemical changes reported in autism. As NF-κB is a response to stressors of several kinds and a master switch for many genes, autism may then arise at least in part from an NF-κB pathway gone awry.”
Excerpt:
“We argue that scientific research does not support rejecting the link between the neurodevelopmental disorder of autism and toxic exposures.”
Excerpt:
“These data and those in our companion study on correlation of gene expression and lead levels show that AU and TD children display different correlations between transcript levels and low levels of mercury and lead. These findings might suggest different genetic transcriptional programs associated with mercury in AU compared to TD children.”