Thimerosal

An ethylmercury-sulfidobenzoate that has been used as a preservative in vaccines; antivenins; and ointments. It was formerly used as a topical antiseptic. It degrades to ethylmercury and thiosalicylate. – NLM Medical Subject Headings, U.S. National Library of Medicine, 2021

An organomercurial compound and derivative of thiosalicyclic acid with antibacterial and antifungal properties. Although the mechanism of action has not been fully elucidated, thimerosal inhibits sulfhydryl-containing active site of various enzymes and binds to sulfhydryl compounds, such as glutathione, cysteine, and SH groups of proteins. In addition, thimerosal activates the InsP3 calcium channel on endoplasmic reticular membrane, thereby triggering the release of calcium from intracellular stores resulting in a calcium-induced calcium-influx of extracellular calcium. Consequently, thimerosal may induce or inhibit cellular functions dependent on calcium signaling. – NCI Thesaurus, U.S. National Cancer Institute, 2021

Highlights

• Thimerosal (TM) significantly affects mitochondrial bioenergetics in the brain.
• Mitochondrial integrity (membrane potential) was maintained after acute TM treatment.
• Ethylmercury released after the breakdown of TM compromised the cholinergic system.
• The brain is more sensitive to oxidative stress induced by TM compared to the liver.

More
  • February 6, 2024

Excerpt:
“The Cr, As and Al are found in high concentrations in the blood of an autistic child when compared to normal child reference values. The toxic metals, particularly aluminium, are primarily responsible for difficulties in socialization and language skills disabilities. Zinc and copper are important elements in regulating the gene expression of metallothioneins (MTs), and zinc deficiency may be a risk factor for ASD pathogenesis. Autistics frequently have zinc deficiency combined with copper excess; as part of the treatment protocol, it is critical to monitor zinc and copper levels in autistic people, particularly those with zinc deficiency. Zinc deficiency is linked to epileptic seizures, which are common in autistic patients. Higher serum manganese and copper significantly characterize people who have ASD. Autistic children have significantly decreased lead and cadmium in urine, whereas they have significantly higher urine Cr. A higher level of As and Hg was found in the ASD individual’s blood.”

More
  • February 2, 2023

Excerpt:
“The whole blood concentrations of Mo (p = 0.004), Cd (0.007), Sn (p = 0.003), and Pb (p = 0.037) were significantly higher in the ASD cases than in the controls. Moreover, Se (0.393), Hg (0.408), and Mn (- 0.373) concentrations were significantly correlated between whole blood and urine levels in ASD case subjects. There were significant correlations between whole blood Sb (0.406), Tl (0.365), Mo (- 0.4237), Mn (- 0.389), Zn (0.476), and Se (0.375) levels and core behaviors of ASD. Although the mechanism of trace element imbalance in ASD is unclear, these data demonstrate that core behaviors of ASD may be affected by certain trace elements. Further studies are recommended for exploring the mechanism of element imbalance and providing corresponding clinical treatment measures.”

More
  • February 1, 2023

Conclusions: Conflicts of interest (e.g., financial) that abound between health regulatory agencies and the pharmaceutical industry impact what is ultimately reckoned as medical consensus. Outcome reporting bias that is inherent to all researchers to some degree, obscures medical and scientific truth. Advancement of public health requires that researchers have integrity and an openness and willingness to collaborate to resolve contradictory findings. In fact, it is usually through meticulous, rigorous, scientific investigation of contradictory findings that medical science has advanced and contributed to improvements in public health – since medical consensus and orthodoxy can be incorrect.

More
  • September 21, 2022

Excerpt:
“Six case-control studies with 425 study subjects met our inclusion criteria. A total of four studies indicated higher levels of As, Pb, Hg, Cd, Al, Sn, Sb, Ba, TI, W, and Zr in whole blood, RBC, in whole blood, RBC, and hair samples of children with autism compared with control suggestive of a greater toxic metal exposure (immediate and long-term). Three studies identified significantly higher concentrations of Cd, Pb and Hg in urine and hair samples of autistic children compared to control suggesting decreased excretion and possible high body burden of these metals. The findings from this review demonstrate that high levels of toxic metals are associated with ASD, therefore, critical care is necessary to reduce body burden of these metals in children with ASD as a major therapeutic strategy.”

More
  • January 1, 2022

Excerpts:
“Aberrant migration of inhibitory interneurons can alter the formation of cortical circuitry and lead to severe neurologic disorders including epilepsy, autism, and schizophrenia.”

“These findings highlight key roles for JNK signaling in leading process branching, nucleokinesis, and the trafficking of centrosomes and cilia during interneuron migration, and further implicates JNK signaling as an important mediator of cortical development.”

More
  • August 20, 2020

Excerpt:
“Results: A significant and positive correlation was found between hair metal burden (lead, aluminum, arsenic and cadmium levels) and severity of ASD symptoms (social communication deficits and repetitive, restrictive behaviors). Hair zinc level were inversely related with age while there was a negative, significant association between hair zinc level and severity of autistic symptoms (defective functional play and creativity and increase of stereotyped behavior). Lead, molybdenum and manganese hair levels were inversely correlated with cognitive level (full intelligence quotient) in ASD individuals.

Conclusions: The present study suggests the importance to combine metallomics analysis with pertinent disease features in ASD to identify potential environmental risk factors on an individual level possibly in the early developmental period.”

More
  • January 1, 2020

Excerpt:
“The literature strongly supports that autism is most accurately seen as an acquired cellular detoxification deficiency syndrome with heterogeneous genetic predisposition that manifests pathophysiologic consequences of accumulated, run-away cellular toxicity. At a more general level, it is a form of a toxicant-induced loss of tolerance of toxins, and of chronic and sustained ER overload (“ER hyperstress”), contributing to neuronal and glial apoptosis via the unfolded protein response (UPR). Inherited risk of impaired cellular detoxification and circulating metal re-toxification in neurons and glial cells accompanied by chronic UPR is key.”

More
  • March 16, 2018

“CONCLUSIONS:
the results of this preclinical study, consistent with previous studies on mice and rats, reveals that neonatal dose-dependent exposure to Thimerosal mimicking the childhood vaccine schedule can induce abnormal social interactions and stereotyped behaviors similar to those observed in neurodevelopmental disorders such as autism, and, for the first time, revealed that these abnormalities may be ameliorated by ALA. This indicates that ALA may protect against mercurial-induced abnormal behaviors.”

More
  • February 24, 2018

Conclusions
Results of the current meta-analysis revealed that mercury is an important causal factor in the etiology of ASD. It seems that the detoxification and excretory mechanisms are impaired in ASD patients which lead to accumulation of mercury in the body. Future additional studies on mercury levels in different tissues of ASD patients should be undertaken.

More
  • September 4, 2017