Excerpt: “Our findings that DCs primarily express the RyR1 channel complex and that this complex is uncoupled by very low levels of THI with dysregulated IL-6 secretion raise intriguing questions about a molecular basis for immune dyregulation and the possible role of the RyR1 complex in genetic susceptibility of the immune system to mercury.”

“Dendritic cells are exquisitely sensitive to Thimerosal, with one mechanism involving the uncoupling of positive and negative regulation of Ca2+ signals contributed by RyR1.”

More
  • March 16, 2006

Excerpt:

“Recently, it was found that autistic children had a higher mercury exposure during pregnancy due to maternal dental amalgam and thimerosal-containing immunoglobulin shots. It was hypothesized that children with autism have a decreased detoxification capacity due to genetic polymorphism. In vitro, mercury and thimerosal in levels found several days after vaccination inhibit methionine synthetase (MS) by 50%. Normal function of MS is crucial in biochemical steps necessary for brain development, attention and production of glutathione, an important antioxidative and detoxifying agent. Repetitive doses of thimerosal leads to neurobehavioral deteriorations in autoimmune susceptible mice, increased oxidative stress and decreased intracellular levels of glutathione in vitro. Subsequently, autistic children have significantly decreased level of reduced glutathione. Promising treatments of autism involve detoxification of mercury, and supplementation of deficient metabolites.”

More
  • October 1, 2005

Excerpt:
“The promoters of genes up-regulated by aluminum are enriched in binding sites for the stress-inducible transcription factors HIF-1 and NF-kappaB, suggesting a role for aluminum, HIF-1 and NF-kappaB in driving atypical, pro-inflammatory and pro-apoptotic gene expression. The effect of aluminum on specific stress-related gene expression patterns in human brain cells clearly warrant further investigation.”

More
  • September 20, 2005

Excerpts:
“However, testosterone which appeared protective at very low levels (0.01 to 0.1 micromolar), dramatically increased neuron death at higher levels (0.5 to 1.0 micromolar). In fact, 1.0 micromolar levels of testosterone that by itself did not significantly increase neuron death (red flattened oval), within 3 hours when added with 50 nanomolar thimerosal (solid circles) caused 100% neuron death.”

“These testosterone results, while not conclusive because of the in vitro neuron culture type of testing, clearly demonstrated that male versus female hormones may play a major role in autism risk and may explain the high ratio of boys to girls in autism (4 to 1) and autism related disorders.“

More
  • August 29, 2005